
Virtualizing Services and Resources with ProBus: The WS-Policy-Aware
Service and Resource Bus∗

Ralph Mietzner, Tammo van Lessen, Alexander Wiese, Matthias Wieland,
Dimka Karastoyanova, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

firstname.lastname@iaas.uni-stuttgart.de

Abstract

A fundamental principle of service oriented architec-
tures is the decoupling of service requesters and service
providers to enable late binding of services at deploy-
ment time or even dynamic binding of services at runtime.
This is important in enterprise settings, where different
services that implement business functions in critical
business processes are dynamically chosen based on
availability or price. The same problem also applies
to dynamic Grid environments where resources need to
be dynamically chosen based on availability and other
non-functional properties. The WS-Policy framework
describes how policies for both providers and requesters
are specified to allow the selection of services based on
these policies. Existing approaches, using WS-Policy,
have drawbacks by placing the burden of the service
selection partially on the client. In this paper we present
an extended enterprise service bus that allows service
clients to submit policies to which service providers need
to comply with together in one message with the service
invocation request. We show how these policies are eval-
uated in the bus and how policies are defined for not
only stateless services, but also stateful resources.

1. Introduction

Today, enterprises are faced with numerous chal-
lenges relating to the flexibility of both operational pro-
cedures as well as the supporting IT infrastructure and
applications. A frequent solution to cope with the re-
quest for flexibility on an IT-level is the adoption of
service oriented architectures (SOA). Service oriented

∗The work published in this article was partially funded by the
SUPER project under the EU 6th Framework Programme Information
Society Technologies Objective (contract no. FP6-026850, http:
//www.ip-super.org/).

architectures allow dynamic binding of services in busi-
ness processes or service orchestrations. This is possible
since service requesters are decoupled from concrete
service providers. Decoupling service requesters from
concrete services allows exchanging services without
modifying the service requesters’ applications.

In enterprise settings an enterprise service bus (ESB)
provides a level of indirection between service providers
and service requesters and thus virtualizes concrete ser-
vice implementations. This is done by matching the func-
tional properties of the interface of the service provider
and functional requirements of the service requester. All
matching services are put on a candidate list. Addition-
ally to that it can be possible that service clients want
to select a service from the candidate list based on non-
functional properties at runtime. For that a services on
the candidate list that fulfills the non-functional require-
ments has to be determined.

The contribution of this paper is to introduce
ProBus, a standards-based ESB capable of policy-based
service and resource selection in the service bus. Our
approach is based on the well-established WS-Policy
standard [19] and is particularly suited to dynamic en-
vironments where services and resources dynamically
appear and disappear and resource properties change
frequently. The presented approach reduces implemen-
tation complexity for clients, as it delegates the service
selection completely to the service bus. Our approach
extends the WS-Policy-based selection of services to
stateful resources, thus unifying both: service and re-
source virtualization.

The remainder of this paper is structured as follows:
In Section 2 we lay the necessary foundations by show-
ing how dynamic service selection based on WS-Policy
is done today and by describing how it is done in ProBus.
In Section 3 we introduce a scenario to motivate dynamic
resource selection in the bus. In Section 4 we then de-

2009 IEEE International Conference on Web Services

978-0-7695-3709-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICWS.2009.44

617

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on June 15,2010 at 13:09:23 UTC from IEEE Xplore. Restrictions apply.

scribe how ProBus handles WS-Policy based resource
selection. We describe the architecture and implemen-
tation of ProBus which is implemented as an extension
to the open source Apache ServiceMix ESB (Section 5)
and describe how it relates to related concepts used in
enterprise and Grid environments (Section 6). Section 7
finishes the paper with a conclusion and outlook.

2. Service Selection Using WS-Policy

WS-Policy [19] is a framework and model to de-
scribe policies that are represented by requirements, ca-
pabilities and general characteristics in a Web service
(WS) world. The WS-Policy specification defines the
model and syntax to define such policies. A policy is a
collection of alternatives that are composed out of a set
of assertions. WS-PolicyAttachment [18] defines how
to attach policies to arbitrary entities in a WS based sys-
tem. In particular, WS-PolicyAttachment specifies how
policies can be attached to elements in the WSDL [20],
description of a service. Annotating services with poli-
cies allows describing non-functional properties for a
service formalized in the policy. Service clients can se-
lect services based on functional properties (described
in WSDL) and non-functional properties (described in
WS-Policy) for example from a UDDI registry. To do so,
a service client describes the requested non-functional
properties (such as security requirements, transaction
support or price) in a requester policy. WS-Policy de-
fines an intersection algorithm to compare requester and
provider policies. The intersection algorithm first nor-
malizes the policies and then computes their intersection.
The result of the intersection is the so-called effective
policy. An effective policy is a new policy that contains
all alternatives of the requester and provider policies
that are compatible. Two alternatives of two policies
are said to be compatible if the one alternative contains
the same assertions as the other alternative. If at least
one alternative of a policy is compatible to any alter-
native in the other policy, these policies are said to be
compatible. This means that in order for two policies
to be compatible the effective policy that results from
their intersection must contain at least one non-empty
alternative. The effective policy can be seen as a contract
between requester and provider, such as that the invoca-
tion needs to be encrypted in a certain way. WS-Policy
as a general framework only compares assertions based
on QNames. Whether the attributes of the assertion or
any possible child elements are the same in the requester
and the provider policy is explicitly left open. WS-Policy
considers this to be a domain-specific problem that is to
be solved by the so-called domain-specific processing
[19, Section 4.5].

Service

Web Server:
WSDL+ binding,

Policy

publish

download
(WSDL+binding, Policy)

invoke
(SOAP)generate stub

Iff policy fulfills requirements:
User generates a stub for service
invocation using WSDL+ binding.

Legend
= User of the service = Message exchange

= Systems = Functional Components

= Technical device used by the user to invoke the service

Client

Figure 1. Class 1: Manual service selection

Service

publish
(WSDL+
binding,
Policy)

invoke
(SOAP)

Service
Directory

find
(WSDL,
Policy)

candidate list
(WSDL +
binding)

select

find

Client

Figure 2. Class 2: Policy based dynamic ser-
vice selection
2.1. Different Classes of WS-Policy based Ser-

vice Selection

In the following the different classes of dynamic ser-
vice binding are described. For resources these classes
are similar only that the dynamic binding is done for
every usage of the resource instead of normally once for
a service.

Class 1: Manual service selection The straight for-
ward way of service selection is to search manually for
a service description (WSDL) that provides the func-
tionality and to check if the service properties (Policy)
match the needs. This is shown in Fig. 1. Many users
prefer that static manual service binding because it has
following advantages: (i) it is easy to use, (ii) the user
knows exactly which concrete service is used and (iii)
no functional components on the client are needed.

Class 2: Policy based dynamic service selection
However autonomous dynamic service binding is needed
for flexibility and scalability reasons. In currently used
approaches dynamic binding and policy evaluation is
done by the client applications as shown in Figure 2:
The service selection process is comprised of three steps.
In the first step the requester sends the policy (either
at design time or runtime) to the registry which then
returns a list of effective policies from which the ser-

618

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on June 15,2010 at 13:09:23 UTC from IEEE Xplore. Restrictions apply.

ProBus
invoke
(SOAP,
Policy)

Service

publish
(WSDL+
binding,
Policy)

invoke
(SOAP)

Service
Directory

find(WSDL,
Policy) candidate list

(WSDL+
binding)

select

find

Client

Figure 3. Class 3: ProBus based dynamic ser-
vice selection
vice requester can choose one policy (and therefore the
associated endpoint). The requester then sends the ac-
tual request to the endpoint that he has chosen from the
list. This approach is implemented in standard service
middleware, such as Apache Axis 2 [2]. It is used in en-
terprise contexts [4], [14] [20], as well as Grid scenarios.
Using WS-Policy to define mainly security capabilities
and requirements in Grids has been proposed in [7] [15]
and in [13] for scientific Workflows. This has following
disadvantages: Additional functional components are
needed on the client side (i.e., to perform the “find” and
“select” operations). Since the approach comprises the
overhead of requesting a list from the server, transmit-
ting the list to the client and then selecting one of the
candidates, it is typically only done once at deployment
time, and then always the same service is used.

Class 3: The policy aware service and resource bus
The contribution of this paper is to introduce an ap-
proach for dynamic service binding that is as easy to
use as manual binding (class 1) but is as powerful as the
autonomous dynamic service binding (class 2). This is
accomplished by the extension of an existing service bus
(Apache ServiceMix). The extended service bus ProBus
is capable of providing a one-step WS-policy based ser-
vice selection as shown in Figure 3. One-step means that
only one message is sufficient for selecting and using a
service. In case ProBus does not find a suitable service,
a corresponding error is returned. ProBus has the advan-
tage that it is very easy to use - the client always calls the
same interface on the ProBus and delegates the selection
completely to the bus by specifying the policy together
with the invocation request in one message. Therefore
no additional functional components (to perform the find
and select operations) are needed on the client.

Listing 1 shows how a policy can be included
in the header of a SOAP message1. The element
requiredPolicy contains the policy the service

1The namespace prefixes for all examples are the following: soap
refers to the SOAP namespace, wsp refers to the WS-Policy names-
pace, rb refers to http://www.servicemix.org/policy, prn refers to
http://www.example.org/printer

� �
<soap:Envelope ...>
<soap:Header>
<rb:requiredPolicy>
<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<prn:printer prn:maxCostPerPage="$0.3"/>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>
</rb:requiredPolicy>
</soap:Header>
<soap:Body>
<!-- Payload of the message -->
</soap:Body>
</soap:Envelope>� �
Listing 1. SOAP message with policy included
in the header

client expects the service to follow (or expects ProBus
to select a service that is compatible with it).

In this class we explicitly need to tackle the domain-
specific post-processing issues in the bus. Therefore
we define a general way how to define these domain-
specific post-processing rules. As WS-Policy is ren-
dered as XML, we choose XPath to describe these rules.
Therefor the mechanism allows to deploy rules that for
example state that the maxCostPerPage attribute of
the requester policy must be smaller than the value of
the maxCostPerPage attribute of the provider policy.

3. Scenario for Dynamic Resource Selec-
tion

A resource represents a stateful service. In common
understanding a service is invoked, such an invocation
always produces the same results for the same input val-
ues. By that a service is stateless which is an important
quality because it allows services to be implemented
scalable by virtualizing them. In contrast in this paper
we define the interaction with a resource as usage. The
difference between use and invoke is that usage changes
the state of a resource. That means a resource is stateful
which has the implication that each time the resource is
used the reaction could be different even for the same
input values. So how a resource reacts and what it is
capable of is dependent on its actual state. This state is
described in a resource property document. That docu-
ment changes frequently, which demand a very dynamic
binding of resources. For every usage of a resource the
binding has to be reviewed. In contrast a service has to
be bound only once and can be invoked afterwards as

619

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on June 15,2010 at 13:09:23 UTC from IEEE Xplore. Restrictions apply.

?

?

ResourcePropertyDocument:
name =HP Color Laser Jet
duplex = yes
color = yes
state = paper jam
waiting queue = 5
cartridge =
 50% black
 76% yellow
 02% magenta
 43% cyan
maxPrintSize = A4
speed = 12 pages per s
cost = 0.04€ per page

ResourcePropertyDocument:
name =plotter
duplex = yes
color = yes
state = ok
waiting queue = 1
cartridge =
 73% black
 26% yellow
 20% magenta
 42% cyan
maxPrintSize = A0
speed = 0.2 pages per s
cost = 4€ per page

ResourcePropertyDocument:
name =Fax
duplex = no
color = no
state = ok
waiting queue = 0
cartridge =
 13% black
maxPrintSize = A4
speed = 4 pages per s
cost = 0.03€ per page

Policy:
waiting queue < 10
cartridge >
 05% black
maxPrintSize >= A4
cost < 0.05€ per page
state=ok

no „print“ functionality

Client

ProBus (policy aware service and resoure bus)

Figure 4. Printer scenario for dynamic re-
source selection
long as it is available. For a better understanding of that
following simplified scenario is given.

In a company several printers are available. A
printer can be seen as a resource with a WS-Resource in-
terface providing a resource property document as shown
in Figure 4. Normally a user has to select the printer
manually. For that the user checks the state and proper-
ties of each printer and selects the best fitting one to use.
This has to be done for every print job again, because the
state of the printer could have changed in between, e.g.
from (state=ok) to (state=paper-jam). Resource selection
is even dependant of the kind of document the user wants
to print, e.g. if it is a black and white document or a
colored document. That shows how important dynamic
binding of resources is.

Because of that we implemented ProBus that pro-
vides dynamic resource and service selection based on
policies in a one-step interaction. Figure 4 shows how
the printer scenario is supported by ProBus: The client
wants to print a black and white document. To do that
he describes his requirements for the printing as a policy.
Then he sends the document together with the policy
to ProBus. The bus then executes the find and select
functionality and routes the document to a resource that
provides the printing functionality and fulfills the re-
quirements. As return value the client gets the identifier
of the used resource.

4. Using ProBus for WS-Policy based Re-
source Selection

The Web service Resource Framework (WSRF) [8]
is the standard to render stateful resources as Web
services. It consists of several specifications that
specify different aspects of stateful resources (so-
called WS-Resources). The WS-ResourceProperties

specification [9] standardizes how the state is ren-
dered for WS-Resources. Therefore it introduces a
so-called resource properties document. It contains
a set of resource properties in terms of XML ele-
ments. These resource properties can be accessed
and manipulated via a set of standard operations
such as: GetResourceProperty to retrieve a
resource property; SetResourceProperties to
manipulate a resource property; GetMultiple-
ResourceProperties to retrieve sev-
eral resource properties at once; or
GetResourcePropertyDocument to retrieve the
whole resource property document at once.

Similar to a WS-Policy that describes non-
functional properties of a Web service, a resource proper-
ties document describes functional and/or non-functional
properties of a WS-Resource. The mechanisms de-
scribed above help to select a particular service from
a group of functionally equivalent services. The same
mechanism can be employed to select a particular re-
source from a pool of resources from the same type.
We therefore detail the example from Section 3 into the
following: A set of resources that provide printing ser-
vices can be accessed via a management Web service.
These resources expose resource property documents,
which contain a resource property that describes their
state, the cost per page and the size of their printing
queue. A client wants to print a document on these
printing resources (but it does not care on which one).
Since the printing should happen quickly and must be
cheap only cheap printing resources with a small print-
ing queue should be selected. The client could now
query all printing resources for their price and queue
size by invoking their GetResourceProperty op-
erations. This implies that the client knows all ´printing
resources and also is able to perform the selection logic
which complicates the client development and tightly
couples the client to the resources. Therefore we pro-
pose a different approach that employs “make-it-happen”
semantics for such requests. Using this approach, the
client simply sends a printing request that contains a
header with a WS-Policy that specifies the maximum
cost and queue size. The middleware (ProBus) then se-
lects the appropriate resource based on the published
resource properties document and forwards the request
to the resource. Therefore the client does not need to
know which resources exist and is completely decoupled
from them.

This approach however entails several problems,
which have been identified and are tackled in the next
sections:

1. How does the client know which particular resource
stored his data so that he can retrieve it later? In

620

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on June 15,2010 at 13:09:23 UTC from IEEE Xplore. Restrictions apply.

more general terms: How are conversations be-
tween client and stateful resource handled if the
client does not know the concrete Endpoint Refer-
ence (EPR) of the resource? (see 4.1)

2. How can a client define policies on resource prop-
erties? (see 4.2)

3. How does the bus select concrete resources based
on these policies? (see 4.3)

4. How does the bus handle the dynamic appearance
and disappearance of resources? (see 4.4)

5. How does the bus handle exceptions, i.e., when no
suitable resources can be discovered? (see 4.5)

4.1. Handling Conversations

When simply sending a policy with the request the
client does not know which concrete resource dealt with
his request. This imposes a problem in case several mes-
sages need to be exchanged in a complex conversation
with this particular resource. Two possible solutions
shown in Figure 5 come to mind when trying to solve
this problem.

EPR based solution: The bus replies to the request
with a message that contains the EPR of the resource.
In case of a synchronous request-response message ex-
change the bus can also attach this information to the
response message of the resource.

ID based solution: The client inserts a correlation to-
ken uniquely identifying a conversation in the message,
e.g. using WS-Addressing [16] reference parameters.
The bus then keeps track of which resource is responsi-
ble for which conversation by storing a (conversation id,
EPR) map. Subsequent requests with a conversation id
are then forwarded to the associated resource.

Resources

ProBus

policy,
request

Resources
Resource

request
EPR

request

Resources

ProBus
policy,

id,
request

Resources
Resource

request

requestid,
request Id | EPR

first Client
usage

subsequent
usage

first Client
usage

subsequent
usage

Figure 5. Two possible solutions to handle
conversations with dynamically selected re-
sources

� �
<rb:resourcePropertyCondition

rb:type="xs:QName">
<rb:XPath rb:propertyQName="xs:QName">
xs:string

</rb:XPath>+
<rb:resourcePropertyCondition>� �
Listing 2. Pseudo-Schema for the resource
property condition assertion type

� �
<prn:Printer>
<prn:waitingQueue>10</prn:waitingQueue>
<prn:costPerPage>0.03</prn:costPerPage>
<!--other resource properties -->

</prn:Printer>� �
Listing 3. Example resource properties
document for printer resource

4.2. Defining Policies Relating to Resource
Properties

Similarly to the approach described above, a mech-
anism must exist to describe how the requester policies
are evaluated against the resource properties documents
of the resources. We therefore introduce a new WS-
Policy assertion type, the resource property condition.
It allows defining assertions to be evaluated against re-
source properties. The pseudo-schema of this assertion
type is shown in Listing 2.

A resource property condition assertion type con-
tains a rb:type attribute that refers to the QName of
the resource property document. One or more XPath
rules describe how the post-processing of individual re-
source properties within this document is handled. All
XPath conditions inside of rb:XPath elements must
evaluate to true in order that the assertion is compat-
ible with a certain resource property document. The
logical AND and OR operators of XPath can be used
inside an rb:XPath element to formulate more com-
plex conditions. The rb:propertyQName attribute
of an rb:XPath element denotes for which resource
property this rule applies. A printer resource exposes
for example the resource properties document shown in
Listing 3.

In order to only send the request to a printer resource
that has a waiting queue smaller than 10 the client in-
cludes a policy in the request that contains a resource
property condition assertion as shown in Listing 4.

621

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on June 15,2010 at 13:09:23 UTC from IEEE Xplore. Restrictions apply.

� �
<wsp:Policy ...>
<wsp:ExactlyOne>
<wsp:All>
<!-- some assertions -->
<rb:resourcePropertyCondition

rb:type="prn:printer">
<rb:XPath

rb:propertyQName="prn:waitingQueue">
number(prn:waitingQueue/text()) <10

</rb:XPath>
</rb:resourcePropertyCondition>
<!-- more assertions -->

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>� �
Listing 4. Policy containing a resource
property condition assertion

4.3. Resource Selection Based on Policies

Upon receipt of a message including a header with
a policy as shown in Listing 1, the policy processor must
follow the following algorithm:

1. Evaluate the policy against the provider policy as-
sociated with the Web service that handles the re-
source manipulations.

2. In case one or more non-empty alternatives have
been found, the computed effective policy is handed
to the post-processing as described in Section 2.1.

3. Once the post-processor detects two
rb:resourcePropertyCondition ele-
ments in one of the alternatives of the effec-
tive policy, the handling is handed over to
the WSRFAssertionProcessor. The WSRF-
AssertionProcessor then performs the following
steps until a suitable resource is found:

First it performs a GetResourceProperty re-
quest on the next resource of the requested type.
The request contains the value of rb:type at-
tribute of the requester assertion to indicate which
resource property is requested. Then it evaluates the
result of the GetResourceProperty request.

To prevent multiple GetResourceProperty
requests per resource the requester policy can include a
rb:resourcePropertyDocumentCondition
assertion. This assertion in turn includes one or more
rb:XPath elements that define rules directly on the
resource document. The WSRFAssertionProcessor
then only needs to perform one invocation of the re-
source via the GetResourcePropertyDocument

operation to retrieve the whole resource properties
document. This approach has a drawback as the
GetResourcePropertyDocument operation is
optional and therefore can be only used with resource
types that implement this operation. Again, the provider
policy must include the resource property document
condition assertion to indicate that this assertion can be
used and that the corresponding operation is available.

4.4. Dynamic Resource Management

In dynamic settings such as Cloud Computing and
Grid environments resources are created and destroyed
frequently as they appear and disappear dynamically. To
select resources dynamically based on resource prop-
erty (document) assertions, the bus must know which
resources have been created. In order to obtain this
knowledge, several approaches are possible:

After creation the new resource registers with the
bus. However, this requires that the resource knows
about the bus and is capable to register itself there. This
mostly implies modifications on the resource’s imple-
mentation. A more suitable approach allows defining
which operations on endpoints accessed via the bus act as
resource factory and create new resources. The middle-
ware can then evaluate the response of the operation to
determine the endpoint reference (EPR) of the resource
that can then be used for GetResourceProperty
requests later on. This approach has been implemented
in our ProBus prototype.

Regarding the destruction of resources our pro-
totype implements a lazy approach. That means
that the bus only knows about destroyed resources
after it has received a resourceUnvailable
exception after invoking an operation (such as
GetResourceProperty) on a resource. In this case
it removes the resource from its internal resource registry.
A different approach would be to notify the bus upon
deletion of resources. However, this would require that
the resource notifies the bus upon its deletion which is
not always feasible as the implementation of the resource
might need to be changed.

4.5. Exception Handling

When regarding exceptions in service oriented sys-
tems, two main kinds of exceptions need to be distin-
guished: Exceptions on the application level and on the
middleware level. Application level exceptions occur
during the interaction with a resource and are thrown
because of some internal computation error. ProBus
simply forwards this exception to the client. In some
scenarios it might be appropriate to automatically resend

622

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on June 15,2010 at 13:09:23 UTC from IEEE Xplore. Restrictions apply.

the request to another suitable resource. However, this is
out of scope of this paper and subject of future work.

Another area where exceptions occur is the
middleware level. Normal middleware excep-
tions include failures such as connection failures.
In this area ProBus introduces a new excep-
tion type, the noSuitableResourceFound ex-
ception. This exception extends the faults de-
fined in the WS-Resource specification [8]. The
noSuitableResourceFound exception is thrown
by ProBus if ProBus is unable to find a resource that
matches the requester policy. In addition a future ex-
tension to ProBus will return a list of effective policies
for the available resources which is ranked according to
their proximity to the requester policy. By that the client
can adapt its policy so that the next request is succesful
and does not need to employ a trial and error approach.

5. Architecture & Implementation

A suitable architectural foundation for our approach
is offered by Enterprise Service Buses (ESBs). ESBs
provide means for endpoint virtualization, i.e. service
consumers still have to know about the service inter-
face but not about the actual implementation. They bind
against so called virtual endpoints and the bus takes care
about the routing to a particular instance of a partner.
For our prototype, we decided to extend Apache Ser-
viceMix as it provides both, endpoint virtualization and
a sophisticated deployment model so that, after making
endpoint routing policy-aware, policy related artifacts
can be easily deployed.

ProBus Middleware (Apache Service Mix)

request,

policy

PP

Service

PPP

Resource

RP

XPath Assertion
Processor

WSRF Assertion
Processor

Post-Processing
Rule Descriptors

effective
policyef

fe
cti

ve

po
lic

y

requestrequest

WS-Policy Intersection

Client

Figure 6. ProBus dynamically selecting ser-
vices and resources based on policies and re-
source properties

The extensions we have made to ServiceMix are
currently being prepared for a code donation to Apache.
Our prototype allows registering policies for services.
Users can deploy post-processing rules described in post-
processing rule descriptors to handle complex assertions.

Using resource factory descriptors users can mark oper-
ations of services as resource factory operations which
create resources that then are automatically registered
with ProBus. Clients can then include their requirements
in the form of resource property assertions in the header
of their SOAP messages that the middleware evaluates
against the resource property documents of the resources
to select an appropriate resource for the request. As
shown in Figure 6 we implemented post-processors for
standard WS-Policy assertions using post processing
rule descriptors. Another implemented post-processor is
the one that evaluates assertions against WS-Resource
properties. Additional post-processors (e.g. to delegate
resource selection to sophisticated resource management
systems) can be plugged in.

6. Comparison to Related Work

Virtualization of services is an essential element in
service oriented architecture. WS-Policy is a broadly
accepted way [17] to describe non-functional properties
of services. The traditional approach for policy-based
service selection at design time and runtime is imple-
mented in enterprise settings as well as Grid environ-
ments, mainly to advertise and select services based on
their security policies (see Section 2).

The Grid deals with the virtualization of resources,
e.g. through resource brokers [5, 21, 3]. Grid users can
send for instance job submissions to the broker. The
broker then decides which resources will perform the
job. Therefore these resource brokers are similar to our
approach where a service/resource consumer sends an
invocation message that is then distributed to the right
service/resource. Our approach differs from existing
resource brokers and ESBs as it does not distinguish be-
tween resources and services and is not focused on either
one. Compared to Grid resource brokers our ProBus mid-
dleware employs a concept (WS-Policy) well accepted
in the enterprise domain. Our concept differs from ser-
vice level agreement (SLA) management approaches
(such as WSLA [6] or WS-Agreement [1]) as it has a
different focus that is based on the selection of a set
of predefined resources. SLAs can be negotiated inde-
pendently of ProBus with each of the providers of such
resources. Several standards exist based on WS-Policy,
such as WS-SecurityPolicy [12] to define security asser-
tions based on WS-Security; WS-Reliable Messaging
Policy Assertion [11] to define reliable messaging asser-
tions. Other WS-* standards such as WS-Coordination,
WS-AtomicTransaction, WS-BusinessActivity [10] inte-
grate natively with WS-Policy and can thus be exploited
by ProBus. Our approach therefore brings a standards-
based “make-it-happen” approach to service selection

623

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on June 15,2010 at 13:09:23 UTC from IEEE Xplore. Restrictions apply.

in the enterprise as well as the Grid. Additionally the
presented approach does not rely on any specific (Grid)
infrastructure and is extensible to incorporate new stan-
dards based on WS-Policy. Our approach is integrated in
the ESB. The ESB concept is a fundamental concept in
service oriented architecture and is therefore often imple-
mented through a dedicated piece of middleware such as
Apache ServiceMix. Therefore our approach eliminates
the need for additional middleware and can be integrated
with other ESB functionality such as message routing or
message transformation.

7. Conclusion and Outlook

In this paper we presented an approach how to op-
timize policy-based service selection in dynamic envi-
ronments. We introduced the notion of one-step service
selection as a means that completely decouples clients
and service providers, as service selection is pushed com-
pletely into the bus. We showed how requester policies
can be embedded in request messages that are then evalu-
ated dynamically. In addition we described a mechanism
to deploy post-processing rules These post-processing
rule descriptors are based on XPath and allow domain
experts to specify very complex domain-specific post-
processing rules.

We introduced an approach how service requesters
can formulate WS-Policy assertions that evaluate against
resource properties of WS-Resources. This allows for
policy-based selection of resources without modifying
existing WSRF resource implementations. Our one-step
service selection approach works best in dynamic set-
tings where resources and services possess dynamic poli-
cies and resource properties. In these settings where
policies need to be evaluated on every request our ap-
proach for one-step service and resource selection based
on WS-Policy reduces the amount of message exchanges
between requester and ESB middleware. In future work
we will combine ProBus with a BPEL engine to define
complex dynamic policy-based resource provisioning
workflows based on a standard SOA infrastructure. We
will also investigate how failover mechanisms can be
implemented, that deal with errors in resources by re-
sending the request to a different suitable resource.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Lud-
wig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and
M. Xu. Web Services Agreement Specification (WS-
Agreement) Version 2005/09. In Global Grid Forum,
2005.

[2] Apache Software Foundation. Apache Axis 2.
http://ws.apache.org/axis2/, 2007.

[3] R. Buyya, D. Abramson, and J. Giddy. Nimrod-G Re-
source Broker for Service-Oriented Grid Computing.
IEEE Distributed Systems Online, 2(7), 2001.

[4] S. Chaari, Y. Badr, and F. Biennier. Enhancing web
service selection by QoS-based ontology and WS-policy.
In SAC ’08, 2008.

[5] I. Foster and C. Kesselman. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann,
2004.

[6] A. Keller and H. Ludwig. The WSLA Framework: Speci-
fying and Monitoring Service Level Agreements for Web
Services. Journal of Network and Systems Management,
11(1):57–81, 2003.

[7] N. Nagaratnam, P. Janson, J. Dayka, A. Nadalin,
F. Siebenlist, V. Welch, I. Foster, and S. Tuecke. Se-
curity Architecture for Open Grid Services. Global Grid
Forum Working Draft. Revision as of, 6(5), 2003.

[8] OASIS. Web Services Resource 1.2 , 2006.
[9] OASIS. Web Services Resource Properties 1.2 , 2006.

[10] OASIS. WS-TX 1.1 OASIS Standards, 2007.
[11] OASIS. Web Services Reliable Messaging Policy Asser-

tion 1.2, 2008.
[12] OASIS. WS-SecurityPolicy 1.2, 2008.
[13] S. Perera and D. Gannon. Enabling Web Service Exten-

sions for Scientific Workflows. HPDC2006 (WORKS06),
2006.

[14] T. Phan, J. Han, J.-G. Schneider, T. Ebringer, and
T. Rogers. Policy-Based Service Registration and Dis-
covery. In R. Meersman and Z. Tari, editors, OTM Con-
ferences (1), volume 4803 of Lecture Notes in Computer
Science, pages 417–426. Springer, 2007.

[15] S. Singh and S. Bawa. A Framework for Handling Se-
curity Problems in Grid Environment using Web Ser-
vices Security Specifications. Conference on Semantics,
Knowledge, and Grid, 2006.

[16] W3C. Web Services Addressing 1.0 - Core, W3C Rec-
ommendation, 2006.

[17] W3C. Testimonials for WS-Policy 1.5.
http://www.w3.org/2007/07/wspolicy-testimonial,
2007.

[18] W3C. Web Services Policy 1.5 - Attachment, W3C Rec-
ommendation, 2007.

[19] W3C. Web Services Policy 1.5 - Framework, W3C Rec-
ommendation, 2007.

[20] S. Weerawarana, F. Curbera, F. Leymann, T. Storey,
and D. Ferguson. Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR
Upper Saddle River, NJ, USA, 2005.

[21] C. Yang, P. Shih, and K. Li. A high-performance compu-
tational resource broker for grid computing environments.
AINA 2005., 2005.

624

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on June 15,2010 at 13:09:23 UTC from IEEE Xplore. Restrictions apply.

